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Abstract

Ideally one would like to analyse the properties of inhomogeneous fluids/Ising-

like magnets (e.g. wetting of a fluid phase at a wall or confinement in thin film

geometries) using a microscopic Hamiltonian H[m], with m(r) the local order-

parameter (number density/magnetization). For many problems however this is

too difficult and traditionally one has to introduce effective interfacial models based

on a collective coordinate `(y) measuring the position of the fluid interface.

We review progress made in unifying these approaches using multi-field effective

Hamiltonian theory which is a powerful new investigative tool. We emphasis

(i) a systematic method for recovering order-parameter correlations G(r1, r2)

from collective coordinate theory

(ii) the role of coupled fluctuations at three dimensional wetting transitions lead-

ing to

(a) an observable increment to the value of the wetting parameter at com-

plete wetting

(b) an inflation of the mean field regime for local surface response functions

at critical wetting

(iii) the derivation of new identities relating moments of G at different positions

in the fluid

(iv) the development of a linear response theory of fluid adsorption at a non-

planar wall which predicts roughness induced first-order wetting transitions.

The relevance of these predictions for long-standing controversies surrounding Ising

model simulation studies is discussed.
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1 Introduction

A suitable microscopic starting point for modelling fluid adsorption in systems with

short-range forces at a planar wall (situated at z = 0) is the Landau-Ginzburg-

Wilson (LGW) Hamiltonian

HLGW [m] =
∫
dy
{∫ ∞

0
dz

[
1

2
(∇m)2 + φ(m)

]
+
c

2
m2

1 −m1h1

}
(1)

based on a local magnetization order parameter m = m(y, z) with m1(y) the value

at the z = 0 surface. Here h1 > 0 and c are the surface field and enhancement re-

spectively while φ(m) is a suitable double-well energy density yielding coexistence

between bulk magnetizations mα > 0 and mβ < 0 for sub-critical temperatures

T < TC and zero bulk field h = 0. In the context of wetting theory however a

direct analysis of this model is not possible except in mean-field (MF) approxima-

tion which ignores fluctuation effects [1]. To include long-wavelength interfacial

fluctuations most authors consider effective Hamiltonians of the form [2, 3]

H[`] =
∫
dy
{

1

2

(
Σαβ + ∆Σ(`)

)
(∇`)2 +W (`)

}
(2)

based on a collective coordinate `(y) describing the position of the αβ interface.

The binding potential is usually specified as

W (`) = h̄`+ 2κmατe−κ` + be−2κ` (3)

where

τ = h1−cmα
c+κ

; h̄ = (mβ −mα)h ; b > 0 (4)

and κ is the inverse correlation length of the bulk α phase adsorbed at the wall-β

interface. We distinguish between (a) complete and (b) critical wetting transitions

corresponding to the divergence of the adsorption 〈`〉 and transverse correlation

length ξ‖ for (a) h̄ → 0 for τ > 0 and (b) τ → 0− for h̄ = 0, respectively. We

shall focus on the behaviour at the upper critical dimension d = 3 where including

fluctuation effects does not alter the MF critical wetting phase boundary τ = 0
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for all pertinent situations. Minimization of W (`) recovers the MF adsorption

and free energy. Note that we have included a possible weak position dependent

correction term ∆Σ(`) to the free stiffness coefficient Σαβ following the work of

Fisher and Jin [3, 4] who initiated recent reassessments of effective Hamiltonian

theory.

In this article we describe the central theorems, results and predictions of multi-

field effective Hamiltonian theory which form a synthesis between MF and gener-

alised collective coordinate approaches. Our main motivation here is the resolution

of three problems of wetting theory:

Problem 1 Ising model simulation studies of the critical wetting transition at the

marginal dimension d = 3 [5] show only a MF-like divergence for the surface

susceptibility in sharp contrast to predictions of strong non-classical (and

non-universal) criticality [6] or weakly first-order behaviour [4] based on the

interfacial model (2).

Problem 2 Ising model simulation studies of the complete wetting transition [7]

also in d = 3 show that the value of the adsorption critical amplitude θ

appearing in the growth law

κ〈`〉 ≈ θ ln |h̄|−1 (5)

is larger than the prediction [8]

θ = 1 +
ω

2
(6)

based on (2). Here ω is the usual wetting parameter (see below), the tem-

perature dependence of which is accurately known for the Ising model [9].

Problem 3 MF studies of the pair correlation function at wetting [10] based on

(1) show intriguing features for particle positions near the wall that cannot

be understood using the standard effective Hamiltonian (2).
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After addressing these concerns we shall show the utility of the new techniques

by applying them to a number of other problems of interest in the theory of

inhomogeneous fluids.

2 Coupling hypothesis and the CFRS

The starting point for the new effective Hamiltonian theory is the following physical

hypothesis [3]:

The problems of wetting theory described above relate to the inability

of the standard interfacial model to account for the coupling between

order parameter fluctuations near the wall and αβ interface.

We begin by addressing problem (P3) and describe the correlation function re-

construction scheme (CFRS) which allows one to precisely recover the MF order

parameter correlation function (at specific positions) using a theory based on col-

lective coordinates. We will take the most general situation [11] and specialise to

specific examples later as necessity dictates.

Our first task is define the collective coordinates upon which our effective theory

is based. In general there may be any number of them (N say) which prescribe

different types of constraint on the underlying magnetization field. In fact no more

need be said at this stage and we can proceed to the next step of performing a

constrained functional integral (or partial trace) over magnetization configurations

which respect the distribution of the collective coordinates denoted {Xµ(y)}. Fol-

lowing Fisher and Jin [4] we suppose that our choice of collective coordinates are

sensible so that a saddle-point identification is possible:

H[{Xi}] = min
C
HLGW [m] (7)

where C denotes the particular set of constraints employed. Restricting our atten-

tion to long wavelength fluctuations in the fields the general form of the Hamilto-
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nian is

H[{Xi}] =
∫
dy
{

1

2
Σµν({Xi})∇Xµ.∇Xν +W ({Xi})

}
(8)

where W ({Xi}) is the generalised binding potential and the Σµν({Xi}) constitute

the elements of the stiffness matrix. Specific expressions for these functions of the

{Xi} are easily derived in terms of the planar constrained profiles m(N)
π (z; {Xi})

which satisfy a standard Euler-Lagrange equation [11]. Using any one of the effec-

tive Hamiltonians we could proceed to study fluctuation effects using, for example,

renormalization group (RG) techniques to trace over the remaining degrees of free-

dom of the fields {Xi}. Now in general different choices of the collective coordinates

will lead to different results and physical assumptions are needed to justify a par-

ticular approach. For example, if we follow the usual line of reasoning and assume

that the only fluctuations that matter are those in the position of the αβ interface

then we can recover the standard Hamiltonian (2) on adopting a crossing criterion

definition for the field X1 = `(y) as the surface of fixed magnetization mX = 0

(say) [4]. For the moment however let us keep our theory as general as possible

and quote the central result of the CFRS [11].

For arbitrary choices of the collective coordinates {Xi} the multi-field Hamilto-

nian can recover the MF expression for the transverse Fourier transform of the

pair correlation function at the positions {zi} of the fields {Xi} according to the

invariant relation

G(zi, zj; q) =
∂mπ

∂Xµ

(zi; {X})
∂mπ

∂Xν

(zj; {X})Sµν(q) (9)

where Sµν is the matrix of structure factors

Sµν(q) =
∫
dyeiq.(y2−y1)

(
〈Xµ(y1)Xν(y2)〉 − 〈Xµ〉〈Xν〉

)
(10)

This may be calculated using the stiffness matrix expression [12]

S−1(q) =


∂2

11 ∂2
12 · · ·

∂2
12 ∂2

22
...

W ({X}) + q2Σ (11)
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where ∂2
µν ≡

∂2

∂Xµ∂Xν
and is evaluated at MF equilibrium. We emphasise that this

procedure is valid for different collective coordinates and that the identifications

(9) correspond to the precise solution to the MF Ornstein-Zernike equation (with

m̃(z) the MF profile) [10]

(
−∂2

z + φ′′(m̃(z)) + q2
)
G(z, z′; q) = δ(z − z′) (12)

at the specific points z, z′ ∈ {zi}. This theorem provides the necessary mathemati-

cal framework for the solution to (P3) and it only remains for us to choose suitable

coordinates to describe the correlation function structure at a given transition.

2.1 Example; correlation structure at complete wetting

For this transition the inhomogeneity in the magnetization at the wall is large and

following Parry and Boulter [13] we can define interfacial-like variables X1(y) =

`1(y) and X2(y) = `2(y) corresponding to surfaces of fixed magnetization that

remain bound and unbind from the wall respectively as h̄→ 0. The Hamiltonian

for this coordinate system is

H[`1, `2] =
∫
dy
{

1

2
Σµν(`1, `2)∇`µ.∇`ν +

1

2
r`21 +W (`21)

}
(13)

with W (`21) ≡ W (`2 − `1) similar to the standard result (3). The stiffness matrix

reads

Σ =

(
Σ11 0
0 Σαβ

)
+ 2mακ

2τ`21e
−κ`21

(
0 1
1 0

)
+ · · · (14)

and shows that the leading-order position dependence is carried by the off-diagonal

elements. The Σ11 term can be explicitly related to the surface tension of the wall-

α interface [13]. For the present interfacial coordinates the fundamental CFRS

equation simplifies to [12]

G(zi, zj; q) = m̃′(zi)m̃
′(zj)Sij(q) (15)

For positions zi, zj = 〈`2〉, close to the αβ interface, this reproduces the well known

Ornstein-Zernike-like simple Lorentzian form of the pair correlation function. Near
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the wall however the solution is of the required non-Lorentzian form

G(0, 0; q) =
m̃
′2
1

r + q2

[
Σ11 + Σ22+2Σ12

1+q2ξ2
‖

] (16)

seen in the MF studies [10]. By construction this is fully consistent with the

explicit solution to the MF Ornstein-Zernike equation (12) which had caused so

much trouble within the standard interfacial Hamiltonian theory. One of the

elegant features of this approach is the stiffness-matrix free energy relation

fsing ≈ 2Σ12 (17)

which ensures that the formalism is consistent with an exact sum-rule requirement.

Note that the position dependence of the r.h.s. correctly identifies the singular

contribution to the surface free energy.

3 Fluctuation effects; optimised coupled theory

To consider fluctuation effects beyond MF we must carefully choose our collective

coordinates. With our starting point the coupling hypothesis we seek to derive a

two-field Hamiltonian which describes the interactions of the large fluctuations in

the position of the αβ interface (described by an interfacial-like variable X2 = `)

with the relatively small fluctuations of the magnetization near the wall. The

choice of collective coordinate X1 for the lower field is not as obvious and it is best

to consider a space of Hamiltonians [11, 14]

H = {H[s, `; δ]} (18)

characterised by a proper collective coordinate s and coupling angle δ. The proper

collective coordinate has spin-like and interfacial-like components as can be seen

in the fundamental constraint equation [14]

m(s cos δ) = mFJ(0; `) + κmαs sin δ (19)
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where mFJ(z; `) denotes the Fisher-Jin profile which does not account for coupling

effects [3, 4]. The simple geometric meaning of the coupling angle δ is shown in

Fig. 1 (taken from [14]).

δ
s

z
z

m(z)

1

1

m α

m (z
FJ
m α

κ

κ

κ

1
)

Figure 1: Detail of the planar magnetization profiles near the wall in scaled units.
The broken curve shows m(z) which incorporates a local enhancement and trans-
lation of the FJ profile (corresponding to the solid line). The proper coordinate s
and angle δ are shown.

We then ask which choice of Hamiltonian in H is best for modelling the small

order parameter fluctuations near the wall? Using the CFRS described above it

is straightforward to establish that the optimal choice corresponds to a coupling

angle [14]

tan δ∗ = −

∂mFJ
∂z

∣∣∣
z=0

κmα

≈
τ

mα

(20)

since this has the largest local binding potential curvature and stiffness coefficient

Σ11 [11]. Thus deep in the complete wetting regime δ∗ = π
2

and the proper collective

coordinate is interfacial-like similar to the model (13). However as the temperature

is reduced to the critical wetting boundary (τ = 0) the coupling angle rotates and

eventually vanishes. Thus near the critical wetting transition the proper field s

has no interfacial component and is a spin-like variable [11, 14]. In general the

optimal coupled Hamiltonian has the form (ignoring the position dependence of
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the stiffness coefficients) [14]

H[s, `] =
∫
dy
{

1

2
ΣW

11 sec2 δ∗(∇s)2 +
1

2
Σαβ(∇`)2 +

1

2
r̄s2 +W (`− s sin δ∗)

}
(21)

and is amenable to RG analysis [15]. Here ΣW
11 is independent of τ and is explicitly

determined. In many respects the predictions for fluctuation effects are similar to

those of the simpler one-field model(s) but there are notable differences. Firstly

for the complete wetting transition the value of the adsorption critical amplitude

θ (6) is renormalized due to coupling effects [14, 15]

ω̄ = ω + Ω
(τ/mα)2

1 + (Λξwα)−2
+O

(
(τ/mα)4

)
(22)

which should be compared with the standard result (6) which does not have the

final term. In this expression ξwα denotes the correlation at the wall-α interface

and Λ is a suitable momentum cut-off (of order an inverse bulk correlation length

or lattice spacing). Equation (22) shows the role played by two wetting parameters

ω = kBTκ
2

4πΣαβ
; Ω = kBTκ

2

4πΣW11
(23)

in contrast to the standard theory equivalent to Ω = 0. In fact we estimate

[11] that Ω approaches a universal value ΩC ≈ 0.92 in the bulk critical region

complementing the expected universality of ω [9].

In application to the critical wetting transition the optimal model shows the same

asymptotic singularities as the standard model but the size of the critical regime

is dramatically reduced. Calculation of the Ginzburg criterion shows that cross-

over to non-classical behaviour occurs when the (diverging) transverse correlation

length ξ‖ is close to a value satisfying [14]

Λξ‖ ≈ e1+ω−1
(
1 + Λ2ξ2

wα

)Ω
ω + · · · (24)

which is about an order of magnitude bigger than the standard interfacial Hamil-

tonian result [16].

Equations (22) and (24) are the main results of the optimal model calculation and

offer quantitative explanation of the remaining problems (P1) and (P2).
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4 Other applications

4.1 Correlation function algebra

Using the general CFRS (9) it is possible to investigate correlation function struc-

ture for local density functional models of fluid confinement in parallel-plate geome-

tries. Equivalently we may regard these as pertinent to the correlation functions

of the LGW model in MF approximation for the more general situation where a

second surface is present at z = L. For arbitrary positions 0 ≤ z1 ≤ z2 ≤ z3 ≤ L

let us define the variables

Sµν =
G(zµ, zν; 0)

m̃′(zµ)m̃′(zν)
(25)

By considering the properties of general three-field Hamiltonians H[`1, `2, `3] with

interfacial-like variables we can show [17] that the algebraic relations

S12S23 = S22S13 (26)

(S11 − S12)(S33 − S23) = (S13 − S12)(S13 − S23) (27)

must be obeyed. These conditions constrain the form of the correlation function

in parallel-plate geometries. For example for the case of confinement between

identical walls we can use the algebra to derive [17]

σ(z1, z2) =
(
1±

√
1− σ(z1, z1)

)(
1±

√
1− σ(z2, z2)

)
(28)

where

σ(zµ, zν) = 4
d2γ

dL2

G(zµ, zν; q)

m̃′(zµ)m̃′(zν)
(29)

Here γ(L) is the finite-size surface free energy and the ± signs depend on whether

zµ <
L
2

or zµ >
L
2
, respectively . This is an explicit expression for the correlation

between two planes in terms of the correlations along them. Using this relation

we can rederive non-trivial expressions for the scaling of the free energy associ-

ated with confinement near the bulk critical point and in the presence of strong

interfacial fluctuations.
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4.2 Wetting at non-planar walls

Finally we note that the stiffness matrix formalism helps us analytically solve

the problem of wetting at a non-planar wall in MF approximation. One can

construct a linear response theory which relates the free energy of the non-planar

system to the correlation functions of the planar geometry [18]. Specifically let us

consider a LGW Hamiltonian but with the wall located at zW (y) and with an extra

multiplicative surface term related to the increase in area. For small deviations

from the plane it is natural to write the MF free energy as

F = φ(mbulk)V + σAπ +
1

2(2π)d−1

∫
dq q2∆π(q)|ẑW(q)|2 + · · · (30)

where σ is the surface tension and ẑW (q) are the Fourier components of zW (y).

The quantity to be determined describing the non-planar correction to the free

energy is ∆π(q) and using the CFRS we can show [18]

q2∆π(q) = q2φ1(m̃1) + m̃
′2
1

(
1

G(0, 0; q)
−

1

G(0, 0; 0)

)
(31)

where the correlation function is for the planar geometry. These equations are

amenable to an elegant graphical analysis [18] allowing us to analytically determine

the influence of the non-planar boundary on wetting transitions. For strongly first-

order phase transitions the wetting transition temperature is lowered consistent

with the predictions of a simple phenomenological argument [18]. For second-order

wetting transitions however the effect of the boundary geometry is more subtle

and the transition is generically roughness-induced first-order provided the width

of the undulations is larger than a bulk correlation length. This again illustrates

the sensitivity of wetting transitions to ‘fluctuation’ effects at least above and at

the upper critical dimension d = 3.
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